
429

PART V: Conclusion: Model Building and the
Master Programmer

The limits of my language mean the limits of my world…

— Ludwig Wittgenstein, “Tractatus Logico-Philosophicus”

Theories are like nets: He who casts, captures…

— Ludwig Wittgenstein, “Tractatus Logico-Philosophicus”

 The best you can do by Friday is a form of the best you can do…

— Charles Eames, Noted Twentieth Century Designer

 We have come to the end of our task! In Part V we will give a brief
summary of our views of computer language use, especially in a
comparative setting where we have been able to compare and contrast the
idioms of three different language paradigms and their use in building
structures and strategies for complex problem solving. We begin Chapter
32 with a brief review of these paradigm differences, and then follow with
summary comments on paradigm based abstractions and idioms.

But first we briefly review the nature of the programming enterprise and
why we are part of it.

Well, first, we might say that programming offers monetary compensation
to ourselves and our dependents. But this isn’t really why most of us got
into our field. We authors got into this profession because computation
offered us a critical medium for exploring and understanding our world.
And, yes, we mean this in the large sense where computational tools are
seen as epistemological artifacts for comprehending our world and
ourselves.

We see computation as Galileo might have seen his telescope, as a medium
for exploring entities, relationships, and invariance’s never before perceived
by the human agent. It took Newton and his “laws of motion” almost
another century fully to capture Galileo’s insights. We visualize
computation from exactly this viewpoint, where even as part of our own
and our colleagues’ small research footprint we have explored complex
human phenomena including:

• Human subjects’ neural state and connectivity, using human
testing, fMRI scanning, coupled with dynamic Bayesian
networks and MCMC sampling, none of which would be
possible without computation.

430 Part V: Model building and the Master Programmer

• Patterns of expressed genes as components of the human
genome. These gene expression patterns are assumed to be at
the core of protein creation that enables and supports much of
the human animal’s metabolic system, including cortical activity
and communication.

• Real time diagnostics and prognostics on human and mechanical
systems. These complex tasks often require various forms of
hidden Markov models along with other stochastic tools and
languages.

• Understanding human language and voiced speech also requires
computational tools, including various stochastic tools and
models. Better language tools will require conditioning such
systems with realistic models of human understanding and
intention.

Of course this list could go on to include many of the exciting tasks that
make up the daily challenges of our readers. What is important is that we
see computer programming less in terms of the act of building tools, than
as a medium for creating and debugging models of the world – as an
epistemological medium.

We feel that there are (at least) two consequences of our thinking of
computation as an epistemological medium: First, as programmers we are
model builders. We use our data structures and search strategies to capture
state, relations, and invariance’s in our application domains. We come to
understand this domain through progressive approximation. And our
domains are rarely static, but change and evolve across time. Thus we often
require stochastic engines and probabilistic relationships to capture these
complex evolving phenomena.

Second, we explore our world by iterative approximation. When we build a
model, we make an approximation of some aspect of reality. The quality of
our model building is often seen through the lens of failure. As the
philosophers of science continue to remind us, good models are falsifiable.
It is through their failure points that we begin to appreciate our own failure
to comprehend aspects of the phenomena we wish to understand. When
our models are carefully designed and crafted, we can then deconstruct
them to address these failure points and attempt to expand our
understanding. Our increased understanding is then reflected in the next
iteration of our model building. Thus the iterative design methodology,
whether used by the individual programmer, or as is more often the case,
within the collaborating communities of groups of programmers is a
critical methodology in coming to understand our application domains.

We urge the reader to keep these ideas in mind in reading the final chapter
and its reprise of the book’s main themes of language-paradigm-based
abstractions and idioms of the master programmer.

